Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane

نویسندگان

  • Xuefeng Zhou
  • Xuejiao Xing
  • Jingli Hou
  • Jianhua Liu
چکیده

While many data are available on genes encoding proteins for degradation of hydrocarbons in bacteria, the impact of alkane on transporter protein expression is unclear. Pseudomonas aeruginosa SJTD-1 is a strain that can consume medium- and long-chain n-alkanes. In order to study the proteins involved in n-octadecane uptake, we use iTRAQ and label free comparative proteomics analysis to identify the proteins of alkane uptake in response to n-octadecane (C18) comparing with n-hexadecane (C16) in P. aeruginosa SJTD-1. A total of 1102 and 1249 proteins were identified by iTRAQ-based and label free quantitative methodologies, respectively. By application of 1.5 (iTRAQ) or 2-fold (label free) for upregulated and 0.65 (iTRAQ) or 0.5-fold (label free) for downregulated cutoff values, 91 and 99 proteins were found to be differentially expressed comparing SJTD-1 cultivated on C18 with C16 respectively. There are six proteins with the common differential expression by iTRAQ and label free-based methods. Results of bioinformational analysis suggested the involvement of bacterial chemotaxis in responds to C18. Additionally, quantitative reverse transcriptase PCR (qRT-PCR) results confirmed C18-induced change in levels of FleQ, FliC, NirS, FadL and FadD proteins and the role of the proteins in n-octadecane uptake was further discussed in P. aeruginosa. In conclusion, results of the present study provided information about possible target-related proteins of bacterial chemotaxis, swimming performance, alkane transport to stimulus of n-ctadecane rather than n-hexadecane in P. aeruginosa SJTD-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Medium- and Long-Chain n-Alkanes Degrading Pseudomonas aeruginosa Strain SJTD-1 and Its Alkane Hydroxylase Genes

A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexad...

متن کامل

Role of orFD Pseudomonas aeruginosa H103 Gene in Glucose Uptake

Background:Pseudomonas aeruginosa is a gram negative non facultative bacterium and one of the members of normal flora in different sites of body in healthy humans.this bacterium can resist in fluids and hospital environments for a long time.Pseudomonas aeruginosa has two systems for glucose uptake:a low affinity oxidative pathway and a high affinity phosohorylative pathway.Although the role of ...

متن کامل

Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa.

The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid bi...

متن کامل

Effects of EDTA and Tween60 on biodegradation of n-hexadecane with two strains of Pseudomonas aeruginosa

Two Pseudomonas aeruginosa strains with different hydrocarbon uptake modes were observed in the previous research. One strain produces biosurfactant during the process of hydrocarbon uptake, and was named as P. aeruginosa S. The other one utilizes hydrocarbon directly and was named as P. aeruginosa Y. For comparison of the characteristics of the two strains, the effects of EDTA and Tween60 on a...

متن کامل

Metabolic pathway for a new strain Pseudomonas synxantha LSH-7′: from chemotaxis to uptake of n-hexadecane

Bacteria can use n-hexadecane as a carbon source, but it remains incompletely understood whether n-hexadecane is transformed into metabolic intermediates prior to cellular uptake or not. We newly isolated a strain identified as Pseudomonas synxantha LSH-7' and conducted chemotaxis experiment of this bacterial strain towards n-hexadecane, hexadecanol and hexadecanoic acid with qualitative assays...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017